1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
//! Implementation of the SAM4L flash controller.
//!
//! This implementation of the flash controller for the SAM4L uses interrupts to
//! handle main tasks of a flash -- write, reads, and erases. If modifying this
//! file, you should check whether the flash commands (issued via issue_command)
//! generates an interrupt and design a higher level function based off of that.
//!
//! Although the datasheet says that when the FRDY interrupt is on, an interrupt
//! will be generated after a command is complete, it doesn't appear to occur
//! for some commands.
//!
//! A clean interface for reading from flash, writing pages and erasing pages is
//! defined below and should be used to handle the complexity of these tasks.
//!
//! The driver should be `configure()`'d before use, and a Client should be set
//! to enable a callback after a command is completed.
//!
//! Almost all of the flash controller functionality is implemented (except for
//! general purpose fuse bits, and more granular control of the cache).
//!
//! - Author:  Kevin Baichoo <kbaichoo@cs.stanford.edu>
//! - Date: July 27, 2016

use core::cell::Cell;
use core::ops::{Index, IndexMut};
use helpers::{DeferredCall, Task};
use kernel::ReturnCode;
use kernel::common::regs::{ReadOnly, ReadWrite, WriteOnly};
use kernel::common::take_cell::TakeCell;
use kernel::hil;
use pm;

/// Struct of the FLASHCALW registers. Section 14.10 of the datasheet.
#[repr(C)]
struct FlashcalwRegisters {
    fcr: ReadWrite<u32, FlashControl::Register>,
    fcmd: ReadWrite<u32, FlashCommand::Register>,
    fsr: ReadOnly<u32, FlashStatus::Register>,
    fpr: ReadOnly<u32, FlashParameter::Register>,
    fvr: ReadOnly<u32, FlashVersion::Register>,
    fgpfrhi: ReadOnly<u32, FlashGeneralPurposeFuseHigh::Register>,
    fgpfrlo: ReadOnly<u32, FlashGeneralPurposeFuseLow::Register>,
    _reserved1: [u32; 251],
    ctrl: WriteOnly<u32, PicoCacheControl::Register>,
    sr: ReadWrite<u32, PicoCacheStatus::Register>,
    _reserved2: [u32; 4],
    maint0: WriteOnly<u32, PicoCacheMaintenance0::Register>,
    maint1: WriteOnly<u32, PicoCacheMaintenance1::Register>,
    mcfg: ReadWrite<u32, PicoCacheMonitorConfiguration::Register>,
    men: ReadWrite<u32, PicoCacheMonitorEnable::Register>,
    mctrl: WriteOnly<u32, PicoCacheMonitorStatus::Register>,
    msr: ReadOnly<u32, PicoCacheMonitorStatus::Register>,
}

register_bitfields![u32,
    FlashControl [
        /// Wait State 1 Optimization
        WS1OPT OFFSET(7) NUMBITS(1) [
            NoOptimize = 0,
            Optimize = 1
        ],
        /// Flash Wait State
        FWS OFFSET(6) NUMBITS(1) [
            ZeroWaitStates = 0,
            OneWaitState = 1
        ],
        /// ECC Error Interrupt Enable
        ECCE OFFSET(4) NUMBITS(1) [],
        /// Programming Error Interrupt Enable
        PROGE OFFSET(3) NUMBITS(1) [],
        /// Lock Error Interrupt Enable
        LOCKE OFFSET(2) NUMBITS(1) [],
        /// Flash Ready Interrupt Enable
        FRDY OFFSET(0) NUMBITS(1) []
    ],

    FlashCommand [
        /// Write protection key
        KEY OFFSET(24) NUMBITS(8) [],
        /// Page number
        PAGEN OFFSET(8) NUMBITS(16) [],
        /// Command
        CMD OFFSET(0) NUMBITS(6) [
            NOP = 0,
            WP = 1,
            EP = 2,
            CPB = 3,
            LP = 4,
            UP = 5,
            EA = 6,
            WGPB = 7,
            EGPB = 8,
            SSB = 9,
            PGPFB = 10,
            EAGPF = 11,
            QPR = 12,
            WUP = 13,
            EUP = 14,
            QPRUP = 15,
            HSEN = 16,
            HSDIS = 17
        ]
    ],

    FlashStatus [
        /// Lock region x Lock Status
        LOCK15 31,
        LOCK14 30,
        LOCK13 29,
        LOCK12 28,
        LOCK11 27,
        LOCK10 26,
        LOCK9 25,
        LOCK8 24,
        LOCK7 23,
        LOCK6 22,
        LOCK5 21,
        LOCK4 20,
        LOCK3 19,
        LOCK2 18,
        LOCK1 17,
        LOCK0 16,
        ///ECC Error Status
        ///
        /// WARNING! Datasheet has this bit listed in two places...
        ECCERR 9,
        /// High Speed Mode
        HSMODE 6,
        /// Quick Page Read Result
        QPRR 5,
        /// Security Fuses Status
        SECURITY 4,
        /// Programming Error Status
        PROGE 3,
        /// Lock Error Status
        LOCKE 2,
        /// Flash Ready Status
        FRDY 0
    ],

    FlashParameter [
        /// Page Size
        PSZ OFFSET(8) NUMBITS(3) [
            Bytes32 = 0,
            Bytes64 = 1,
            Bytes128 = 2,
            Bytes256 = 3,
            Bytes512 = 4,
            Bytes1024 = 5,
            Bytes2048 = 6,
            Bytes4096 = 7
        ],
        /// Flash Size
        FSZ OFFSET(0) NUMBITS(4) [
            KBytes4 = 0,
            KBytes8 = 1,
            KBytes16 = 2,
            KBytes32 = 3,
            KBytes48 = 4,
            KBytes64 = 5,
            KBytes96 = 6,
            KBytes128 = 7,
            KBytes192 = 8,
            KBytes256 = 9,
            KBytes384 = 10,
            KBytes512 = 11,
            KBytes768 = 12,
            KBytes1024 = 13,
            KBytes2048 = 14
        ]
    ],

    FlashVersion [
        /// Variant Number
        VARIANT OFFSET(16) NUMBITS(4) [],
        /// Version Number
        VERSION OFFSET(0) NUMBITS(12) []
    ],

    FlashGeneralPurposeFuseHigh [
        /// General Purpose Fuse
        GPF63 31,
        GPF62 30,
        GPF61 29,
        GPF60 28,
        GPF59 27,
        GPF58 26,
        GPF57 25,
        GPF56 24,
        GPF55 23,
        GPF54 22,
        GPF53 21,
        GPF52 20,
        GPF51 19,
        GPF50 18,
        GPF49 17,
        GPF48 16,
        GPF47 15,
        GPF46 14,
        GPF45 13,
        GPF44 12,
        GPF43 11,
        GPF42 10,
        GPF41 9,
        GPF40 8,
        GPF39 7,
        GPF38 6,
        GPF37 5,
        GPF36 4,
        GPF35 3,
        GPF34 2,
        GPF33 1,
        GPF32 0
    ],

    FlashGeneralPurposeFuseLow [
        GPF31 31,
        GPF30 30,
        GPF29 29,
        GPF28 28,
        GPF27 27,
        GPF26 26,
        GPF25 25,
        GPF24 24,
        GPF23 23,
        GPF22 22,
        GPF21 21,
        GPF20 20,
        GPF19 19,
        GPF18 18,
        GPF17 17,
        GPF16 16,
        GPF15 15,
        GPF14 14,
        GPF13 13,
        GPF12 12,
        GPF11 11,
        GPF10 10,
        GPF9 9,
        GPF8 8,
        GPF7 7,
        GPF6 6,
        GPF5 5,
        GPF4 4,
        GPF3 3,
        GPF2 2,
        GPF1 1,
        GPF0 0
    ],

    PicoCacheControl [
        /// Cache Enable
        CEN OFFSET(0) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ]
    ],

    PicoCacheStatus [
        /// Cache Controller Status
        CSTS OFFSET(0) NUMBITS(1) [
            Disabled = 0,
            Enabled = 1
        ]
    ],

    PicoCacheMaintenance0 [
        /// Cache Controller Invalidate All
        INVALL 0
    ],

    PicoCacheMaintenance1 [
        /// Invalidate Index
        INDEX OFFSET(4) NUMBITS(4) []
    ],

    PicoCacheMonitorConfiguration [
        /// Cache Controller Monitor Counter Mode
        MODE OFFSET(0) NUMBITS(1) [
            CycleCount = 0,
            IhitCount = 1,
            DhitCount = 2
        ]
    ],

    PicoCacheMonitorEnable [
        /// Monitor Enable
        MENABLE OFFSET(0) NUMBITS(1) [
            Disable = 0,
            Enable = 1
        ]
    ],

    PicoCacheMonitorControl [
        /// Monitor Software Reset
        SWRST 0
    ],

    PicoCacheMonitorStatus [
        /// Monitor Event Counter
        EVENTCNT OFFSET(0) NUMBITS(32) []
    ]
];

const FLASHCALW_BASE_ADDRS: usize = 0x400A0000;

#[allow(dead_code)]
enum RegKey {
    CONTROL,
    COMMAND,
    STATUS,
    PARAMETER,
    VERSION,
    GPFRHI,
    GPFRLO,
}

static DEFERRED_CALL: DeferredCall = unsafe { DeferredCall::new(Task::Flashcalw) };

/// There are 18 recognized commands for the flash. These are "bare-bones"
/// commands and values that are written to the Flash's command register to
/// inform the flash what to do. Table 14-5.
#[derive(Clone, Copy, PartialEq)]
pub enum FlashCMD {
    NOP,
    WP,
    EP,
    CPB,
    LP,
    UP,
    EA,
    WGPB,
    EGPB,
    SSB,
    PGPFB,
    EAGPF,
    QPR,
    WUP,
    EUP,
    QPRUP,
    HSEN,
    HSDIS,
}

/// The two Flash speeds.
#[derive(Clone, Copy)]
pub enum Speed {
    Standard,
    HighSpeed,
}

/// FlashState is used to track the current state and command of the flash.
#[derive(Clone, Copy, PartialEq)]
pub enum FlashState {
    Unconfigured,                 //                 Flash is unconfigured, call configure().
    Ready,                        //                        Flash is ready to complete a command.
    Read,                         //                         Performing a read operation.
    WriteUnlocking { page: i32 }, // Started a write operation.
    WriteErasing { page: i32 },   //   Waiting on the page to erase.
    WriteWriting,                 //                 Waiting on the page to actually be written.
    EraseUnlocking { page: i32 }, // Started an erase operation.
    EraseErasing,                 //                 Waiting on the erase to finish.
}

/// This is a wrapper around a u8 array that is sized to a single page for the
/// SAM4L. Users of this module must pass an object of this type to use the
/// `hil::flash::Flash` interface.
///
/// An example looks like:
///
/// ```
/// static mut PAGEBUFFER: Sam4lPage = Sam4lPage::new();
/// ```
pub struct Sam4lPage(pub [u8; PAGE_SIZE as usize]);

impl Sam4lPage {
    pub const fn new() -> Sam4lPage {
        Sam4lPage([0; PAGE_SIZE as usize])
    }

    fn len(&self) -> usize {
        self.0.len()
    }
}

impl Index<usize> for Sam4lPage {
    type Output = u8;

    fn index(&self, idx: usize) -> &u8 {
        &self.0[idx]
    }
}

impl IndexMut<usize> for Sam4lPage {
    fn index_mut(&mut self, idx: usize) -> &mut u8 {
        &mut self.0[idx]
    }
}

impl AsMut<[u8]> for Sam4lPage {
    fn as_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

// The FLASHCALW controller
pub struct FLASHCALW {
    registers: *mut FlashcalwRegisters,
    ahb_clock: pm::Clock,
    hramc1_clock: pm::Clock,
    pb_clock: pm::Clock,
    client: Cell<Option<&'static hil::flash::Client<FLASHCALW>>>,
    current_state: Cell<FlashState>,
    buffer: TakeCell<'static, Sam4lPage>,
}

// static instance for the board. Only one FLASHCALW on chip.
pub static mut FLASH_CONTROLLER: FLASHCALW = FLASHCALW::new(
    FLASHCALW_BASE_ADDRS,
    pm::HSBClock::FLASHCALW,
    pm::HSBClock::FLASHCALWP,
    pm::PBBClock::FLASHCALW,
);

// Few constants relating to module configuration.
const PAGE_SIZE: u32 = 512;
const NB_OF_REGIONS: u32 = 16;

#[cfg(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE)]
const FREQ_PS1_FWS_1_FWU_MAX_FREQ: u32 = 12000000;
#[cfg(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE)]
const FREQ_PS0_FWS_0_MAX_FREQ: u32 = 18000000;
#[cfg(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE)]
const FREQ_PS0_FWS_1_MAX_FREQ: u32 = 36000000;
#[cfg(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE)]
const FREQ_PS1_FWS_0_MAX_FREQ: u32 = 8000000;

#[cfg(not(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE))]
const FREQ_PS2_FWS_0_MAX_FREQ: u32 = 24000000;

// Macros for getting the i-th bit.
macro_rules! bit {
    ($w:expr) => (0x1u32 << $w);
}

impl FLASHCALW {
    const fn new(
        base_addr: usize,
        ahb_clk: pm::HSBClock,
        hramc1_clk: pm::HSBClock,
        pb_clk: pm::PBBClock,
    ) -> FLASHCALW {
        FLASHCALW {
            registers: base_addr as *mut FlashcalwRegisters,
            ahb_clock: pm::Clock::HSB(ahb_clk),
            hramc1_clock: pm::Clock::HSB(hramc1_clk),
            pb_clock: pm::Clock::PBB(pb_clk),
            client: Cell::new(None),
            current_state: Cell::new(FlashState::Unconfigured),
            buffer: TakeCell::empty(),
        }
    }

    /// Cache controlling functionality.

    //  Flush the cache. Should be called after every write!
    fn invalidate_cache(&self) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        regs.maint0.write(PicoCacheMaintenance0::INVALL::SET);
    }

    pub fn enable_picocache(&self, enable: bool) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        if enable {
            regs.ctrl.write(PicoCacheControl::CEN::Enable);
        } else {
            regs.ctrl.write(PicoCacheControl::CEN::Disable);
        }
    }

    /// Enable HCACHE
    pub fn enable_cache(&self) {
        // enable appropriate clocks
        unsafe {
            pm::enable_clock(pm::Clock::HSB(pm::HSBClock::FLASHCALWP));
            pm::enable_clock(pm::Clock::PBB(pm::PBBClock::HRAMC1));
        }

        // enable and wait for it to be ready
        self.enable_picocache(true);
        while !self.pico_enabled() {}
    }

    pub fn pico_enabled(&self) -> bool {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        regs.sr.is_set(PicoCacheStatus::CSTS)
    }

    pub fn handle_interrupt(&self) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };

        // Disable the interrupt line for flash
        regs.fcr.modify(FlashControl::FRDY::CLEAR);

        // Since the only interrupt on is FRDY, a command should have
        // either completed or failed at this point.

        // Check for errors and report to Client if there are any
        if self.is_error() {
            let attempted_operation = self.current_state.get();

            // Reset state now that we are ready to do a new operation.
            self.current_state.set(FlashState::Ready);

            self.client.get().map(|client| match attempted_operation {
                FlashState::Read => {
                    self.buffer.take().map(|buffer| {
                        client.read_complete(buffer, hil::flash::Error::FlashError);
                    });
                }
                FlashState::WriteUnlocking { .. }
                | FlashState::WriteErasing { .. }
                | FlashState::WriteWriting => {
                    self.buffer.take().map(|buffer| {
                        client.write_complete(buffer, hil::flash::Error::FlashError);
                    });
                }
                FlashState::EraseUnlocking { .. } | FlashState::EraseErasing => {
                    client.erase_complete(hil::flash::Error::FlashError);
                }
                _ => {}
            });
        }

        // Part of a command succeeded -- continue onto next steps.
        match self.current_state.get() {
            FlashState::Read => {
                self.current_state.set(FlashState::Ready);

                self.client.get().map(|client| {
                    self.buffer.take().map(|buffer| {
                        client.read_complete(buffer, hil::flash::Error::CommandComplete);
                    });
                });
            }
            FlashState::WriteUnlocking { page } => {
                self.current_state
                    .set(FlashState::WriteErasing { page: page });
                self.flashcalw_erase_page(page);
            }
            FlashState::WriteErasing { page } => {
                //  Write page buffer isn't really a command, and
                //  clear page buffer doesn't trigger an interrupt thus
                //  I'm combining these with an actual command, write_page,
                //  which generates and interrupt and saves the page.
                self.clear_page_buffer();
                self.write_to_page_buffer(page as usize * PAGE_SIZE as usize);

                self.current_state.set(FlashState::WriteWriting);
                self.flashcalw_write_page(page);
            }
            FlashState::WriteWriting => {
                // Flush the cache
                self.invalidate_cache();

                self.current_state.set(FlashState::Ready);

                self.client.get().map(|client| {
                    self.buffer.take().map(|buffer| {
                        client.write_complete(buffer, hil::flash::Error::CommandComplete);
                    });
                });
            }
            FlashState::EraseUnlocking { page } => {
                self.current_state.set(FlashState::EraseErasing);
                self.flashcalw_erase_page(page);
            }
            FlashState::EraseErasing => {
                self.current_state.set(FlashState::Ready);

                self.client.get().map(|client| {
                    client.erase_complete(hil::flash::Error::CommandComplete);
                });
            }
            _ => {
                self.current_state.set(FlashState::Ready);
            }
        }
    }

    /// FLASH properties.
    pub fn get_flash_size(&self) -> u32 {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        let flash_sizes = [
            4, 8, 16, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 2048
        ];
        // get the FSZ number and lookup in the table for the size.
        flash_sizes[regs.fpr.read(FlashParameter::FSZ) as usize] << 10
    }

    pub fn get_page_count(&self) -> u32 {
        self.get_flash_size() / PAGE_SIZE
    }

    pub fn get_page_count_per_region(&self) -> u32 {
        self.get_page_count() / NB_OF_REGIONS
    }

    pub fn get_page_region(&self, page_number: i32) -> u32 {
        (if page_number >= 0 {
            page_number as u32
        } else {
            self.get_page_number()
        } / self.get_page_count_per_region())
    }

    pub fn get_region_first_page_number(&self, region: u32) -> u32 {
        region * self.get_page_count_per_region()
    }

    /// FLASHC Control
    fn set_wait_state(&self, wait_state: u32) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        regs.fcr.modify(FlashControl::FWS.val(wait_state));
    }

    fn enable_ws1_read_opt(&mut self, enable: bool) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        if enable {
            regs.fcr.modify(FlashControl::WS1OPT::Optimize);
        } else {
            regs.fcr.modify(FlashControl::WS1OPT::NoOptimize);
        }
    }

    //  By default, we are going with High Speed Enable (based on our device running
    //  in PS2).
    #[cfg(not(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE))]
    fn set_flash_waitstate_and_readmode(
        &mut self,
        cpu_freq: u32,
        _ps_val: u32,
        _is_fwu_enabled: bool,
    ) {
        // ps_val and is_fwu_enabled not used in this implementation.
        if cpu_freq > FREQ_PS2_FWS_0_MAX_FREQ {
            self.set_wait_state(1);
        } else {
            self.set_wait_state(0);
        }

        self.issue_command(FlashCMD::HSEN, -1);
    }

    #[cfg(CONFIG_FLASH_READ_MODE_HIGH_SPEED_DISABLE)]
    fn set_flash_waitstate_and_readmode(
        &mut self,
        cpu_freq: u32,
        ps_val: u32,
        is_fwu_enabled: bool,
    ) {
        if ps_val == 0 {
            if cpu_freq > FREQ_PS0_FWS_0_MAX_FREQ {
                self.set_wait_state(1);
                if cpu_freq <= FREQ_PS0_FWS_1_MAX_FREQ {
                    self.issue_command(FlashCMD::HSDIS, -1);
                } else {
                    self.issue_command(FlashCMD::HSEN, -1);
                }
            } else {
                if is_fwu_enabled && cpu_freq <= FREQ_PS1_FWS_1_FWU_MAX_FREQ {
                    self.set_wait_state(1);
                    self.issue_command(FlashCMD::HSDIS, -1);
                } else {
                    self.set_wait_state(0);
                    self.issue_command(FlashCMD::HSDIS, -1);
                }
            }
        } else {
            // ps_val == 1
            if cpu_freq > FREQ_PS1_FWS_0_MAX_FREQ {
                self.set_wait_state(1);
            } else {
                self.set_wait_state(0);
            }
            self.issue_command(FlashCMD::HSDIS, -1);
        }
    }

    /// Configure high-speed flash mode. This is taken from the ASF code
    pub fn enable_high_speed_flash(&self) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };

        // Since we are running at a fast speed we have to set a clock delay
        // for flash, as well as enable fast flash mode.
        regs.fcr.modify(FlashControl::FWS::OneWaitState);

        // Enable high speed mode for flash
        regs.fcmd
            .modify(FlashCommand::KEY.val(0xA5) + FlashCommand::CMD::HSEN);

        // And wait for the flash to be ready
        while !regs.fsr.is_set(FlashStatus::FRDY) {}
    }

    /// Flashcalw status

    pub fn is_ready(&self) -> bool {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        unsafe {
            pm::enable_clock(self.pb_clock);
        }
        regs.fsr.is_set(FlashStatus::FRDY)
    }

    fn is_error(&self) -> bool {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        unsafe {
            pm::enable_clock(self.pb_clock);
        }
        regs.fsr.is_set(FlashStatus::LOCKE) | regs.fsr.is_set(FlashStatus::PROGE)
    }

    /// Flashcalw command control
    fn get_page_number(&self) -> u32 {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        regs.fcmd.read(FlashCommand::PAGEN)
    }

    pub fn issue_command(&self, command: FlashCMD, page_number: i32) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        unsafe {
            pm::enable_clock(self.pb_clock);
        }
        // For most commands we wait for the interrupt, for some certain
        // fast/rarely used commands or commands that don't generate interrupts
        // it is better to wait (or at least that is how this driver was
        // originally implemented).
        if command != FlashCMD::QPRUP && command != FlashCMD::QPR && command != FlashCMD::CPB
            && command != FlashCMD::HSEN
        {
            // Enable ready interrupt.
            regs.fcr.modify(FlashControl::FRDY::SET);
        }

        // Setup the command register to run this command.
        let mut cmd = FlashCommand::KEY.val(0xA5) + FlashCommand::CMD.val(command as u32);

        // If this command relies on using a certain page, we need to add that
        // in as well.
        if page_number >= 0 {
            cmd += FlashCommand::PAGEN.val(page_number as u32);
        }

        regs.fcmd.write(cmd);

        // Since we don't enable interrupts for these commands, spin wait
        // until they are finished. In particular, QPR and QPRUP will not issue
        // interrupts (see datasheet 14.6 paragraph 2).
        if command == FlashCMD::QPRUP || command == FlashCMD::QPR || command == FlashCMD::CPB
            || command == FlashCMD::HSEN
        {
            while !regs.fsr.is_set(FlashStatus::FRDY) {}
        }
    }

    /// Flashcalw global commands
    pub fn no_operation(&self) {
        self.issue_command(FlashCMD::NOP, -1);
    }

    pub fn erase_all(&self) {
        self.issue_command(FlashCMD::EA, -1);
    }

    /// FLASHCALW Protection Mechanisms
    pub fn is_page_region_locked(&self, page_number: u32) -> bool {
        self.is_region_locked(self.get_page_region(page_number as i32))
    }

    pub fn is_region_locked(&self, region: u32) -> bool {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        (regs.fsr.get() & bit!(region + 16)) != 0
    }

    pub fn lock_page_region(&self, page_number: i32, lock: bool) {
        if lock {
            self.issue_command(FlashCMD::LP, page_number);
        } else {
            self.issue_command(FlashCMD::UP, page_number);
        }
    }

    /// Flashcalw Access to Flash Pages
    fn clear_page_buffer(&self) {
        self.issue_command(FlashCMD::CPB, -1);
    }

    fn is_page_erased(&self) -> bool {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };
        regs.fsr.is_set(FlashStatus::QPRR)
    }

    fn flashcalw_erase_page(&self, page_number: i32) {
        self.issue_command(FlashCMD::EP, page_number);
    }

    fn flashcalw_write_page(&self, page_number: i32) {
        self.issue_command(FlashCMD::WP, page_number);
    }

    /// There's a user_page that isn't contiguous with the rest of the flash.
    /// Currently it's not being used.
    #[allow(dead_code)]
    fn quick_user_page_read(&self) -> bool {
        self.issue_command(FlashCMD::QPRUP, -1);
        self.is_page_erased()
    }

    #[allow(dead_code)]
    fn erase_user_page(&self, check: bool) -> bool {
        self.issue_command(FlashCMD::EUP, -1);
        if check {
            self.quick_user_page_read()
        } else {
            true
        }
    }

    #[allow(dead_code)]
    fn write_user_page(&self) {
        self.issue_command(FlashCMD::WUP, -1);
    }

    // Instead of having several memset/memcpy functions as Atmel's ASF
    // implementation will only have one to write to the page buffer.
    fn write_to_page_buffer(&self, pg_buff_addr: usize) {
        let mut page_buffer: *mut u8 = pg_buff_addr as *mut u8;

        // Errata 45.1.7 - Need to write a 64-bit all one word for every write
        // to the page buffer.
        let cleared_double_word: [u8; 8] = [255; 8];
        let clr_ptr: *const u8 = &cleared_double_word[0] as *const u8;

        self.buffer.map(|buffer| {
            unsafe {
                use core::ptr;

                let mut start_buffer: *const u8 = &buffer[0] as *const u8;
                let mut data_transfered: u32 = 0;
                while data_transfered < PAGE_SIZE {
                    // errata copy..
                    ptr::copy(clr_ptr, page_buffer, 8);

                    // real copy
                    ptr::copy(start_buffer, page_buffer, 8);
                    page_buffer = page_buffer.offset(8);
                    start_buffer = start_buffer.offset(8);
                    data_transfered += 8;
                }
            }
        });
    }
}

// Implementation of high level calls using the low-lv functions.
impl FLASHCALW {
    pub fn configure(&mut self) {
        let regs: &FlashcalwRegisters = unsafe { &*self.registers };

        // Enable all clocks (if they aren't on already...).
        unsafe {
            pm::enable_clock(self.ahb_clock);
            pm::enable_clock(self.hramc1_clock);
            pm::enable_clock(self.pb_clock);
        }

        // Configure all other interrupts explicitly. Note the issue_command
        // function turns this on when need be.
        regs.fcr.modify(
            FlashControl::FRDY::CLEAR + FlashControl::LOCKE::CLEAR + FlashControl::PROGE::CLEAR
                + FlashControl::ECCE::CLEAR,
        );

        // Enable wait state 1 optimization.
        self.enable_ws1_read_opt(true);
        // Change speed mode.
        self.set_flash_waitstate_and_readmode(48_000_000, 0, false);

        // By default the picocache ( a cache only for the flash) is turned off.
        // However the bootloader turns it on. I will explicitly turn it on
        // here. So if the bootloader changes, nothing breaks.
        self.enable_picocache(true);

        self.current_state.set(FlashState::Ready);
    }

    pub fn get_page_size(&self) -> u32 {
        PAGE_SIZE
    }

    pub fn get_number_pages(&self) -> u32 {
        // Check clock and enable just in case.
        unsafe {
            pm::enable_clock(self.pb_clock);
        }
        self.get_page_count()
    }

    // Address is some raw address in flash that you want to read.
    pub fn read_range(
        &self,
        address: usize,
        size: usize,
        buffer: &'static mut Sam4lPage,
    ) -> ReturnCode {
        // Enable clock in case it's off.
        unsafe {
            pm::enable_clock(self.ahb_clock);
        }

        // Check that address makes sense and buffer has room.
        if address > (self.get_flash_size() as usize)
            || address + size > (self.get_flash_size() as usize) || address + size < size
            || buffer.len() < size
        {
            // invalid flash address
            return ReturnCode::EINVAL;
        }

        // Actually do a copy from flash into the buffer.
        let mut byte: *const u8 = address as *const u8;
        unsafe {
            for i in 0..size {
                buffer[i] = *byte;
                byte = byte.offset(1);
            }
        }

        self.current_state.set(FlashState::Read);
        // Hold on to the buffer for the callback.
        self.buffer.replace(buffer);

        // This is kind of strange, but because read() in this case is
        // synchronous, we still need to schedule as if we had an interrupt so
        // we can allow this function to return and then call the callback.
        DEFERRED_CALL.set();

        ReturnCode::SUCCESS
    }

    pub fn write_page(&self, page_num: i32, data: &'static mut Sam4lPage) -> ReturnCode {
        // Enable clock in case it's off.
        unsafe {
            pm::enable_clock(self.ahb_clock);
        }

        // If we're not ready don't take the command.
        if self.current_state.get() != FlashState::Ready {
            return ReturnCode::EBUSY;
        }

        // Save the buffer for the future write.
        self.buffer.replace(data);

        self.current_state
            .set(FlashState::WriteUnlocking { page: page_num });
        self.lock_page_region(page_num, false);
        ReturnCode::SUCCESS
    }

    pub fn erase_page(&self, page_num: i32) -> ReturnCode {
        // Enable AHB clock (in case it was off).
        unsafe {
            pm::enable_clock(self.ahb_clock);
        }
        if self.current_state.get() != FlashState::Ready {
            return ReturnCode::EBUSY;
        }

        self.current_state
            .set(FlashState::EraseUnlocking { page: page_num });
        self.lock_page_region(page_num, false);
        ReturnCode::SUCCESS
    }
}

impl<C: hil::flash::Client<Self>> hil::flash::HasClient<'static, C> for FLASHCALW {
    fn set_client(&self, client: &'static C) {
        self.client.set(Some(client));
    }
}

impl hil::flash::Flash for FLASHCALW {
    type Page = Sam4lPage;

    fn read_page(&self, page_number: usize, buf: &'static mut Self::Page) -> ReturnCode {
        self.read_range(page_number * (PAGE_SIZE as usize), buf.len(), buf)
    }

    fn write_page(&self, page_number: usize, buf: &'static mut Self::Page) -> ReturnCode {
        self.write_page(page_number as i32, buf)
    }

    fn erase_page(&self, page_number: usize) -> ReturnCode {
        self.erase_page(page_number as i32)
    }
}